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Abstract. We study a one-dimensional anisotropic exclusion model describing particles moving
deterministically on a ring with a single defect, across which they move with probability
0 < q < 1. We show that the stationary state of this model can be represented as a matrix-
product state.

1. Introduction

The one-dimensional asymmetric exclusion process (ASEP) is a lattice model which
describes particles hopping in a preferred direction with stochastic dynamics and hard
core exclusion. It has been used to describe various phenomena like growth processes
[1, 2], polymerization [3], and traffic flow [4]. Although the ASEP is one of the simplest
stochastic many-particle models it shows a rich behaviour ranging from phase transitions
[5, 6] to the formation of shocks [7]. During the last few years exact solutions have been
found for the stationary state under various boundary conditions. In particular, the ASEP
with random sequential dynamics and external particle input and output at the boundaries
has been analysed in detail [6, 8–10]. There are only a few exact results for dynamic
properties (relaxational behaviour) of the ASEP [11].

A mathematical tool which has proved to be very useful for the study of stochastic
lattice models is the so-called matrix-product state (MPS) technique [12–20, 8–10]. Matrix-
product states can be understood as a generalization of ordinary factorizable states with a
product measure in which numbers are replaced by non-commutative objects. This allows
the original problem to be reformulated in terms of algebraic relations. The main advantage
of this technique is that once a nontrivial representation of the algebra is available, physical
quantities like density–density correlation functions can be computed very easily. In 1993
Derridaet al [15] showed that the stationary state of the ASEP with external particle input
and output can be written as a MPS. Since then matrix-product methods have been applied
to various other problems, e.g. to three-state models [14, 15], excited states in the ASEP
[16], certain reaction–diffusion models [17] and models with quasi-parallel updates [18–20].
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Although a lot of work on MPSs has been done, the full range of applications is not yet
known†.

So far the matrix-product technique has been applied mostly to systems which are
homogeneous in the bulk. It is therefore interesting to investigate whether this method can
also be applied to systems with impurities. In case of the ASEP two kinds of impurities are
discussed in the literature. The first kind of impurities aredefective particleswhich jump
with a rate lower than that of other particles [15, 22, 23]. Such ‘moving’ impurities can be
visualized as slow cars on a motorway which (for sufficiently high particle density) induce
traffic jams—a phenomenon which has been related recently to Bose–Einstein condensation
[23]. To this problem the matrix-product technique has been applied successfully [15, 22].
The second kind of impurities arestationary defectswhich can be introduced by lowering
the hopping rate at specific bonds. As in the previous case, such impurities can provoke
the formation of shocks [24]. Defects of this kind play an important role in traffic flow
applications where exact solutions are particularly interesting. However, for some reason
ASEPs with stationary defects are much harder to solve than systems with moving impurities.
Exact results exist only in the case of an exclusion model with parallel dynamics and
deterministic hopping in the bulk [25, 26]. The case of stochastic hopping or random
sequential dynamics has not yet been solved exactly. Moreover, matrix-product techniques
have not been applied to these types of problems.

In this paper we consider the stationary state of the ASEP on a ring with various kinds
of parallel dynamics, deterministic hopping in the bulk and a single stationary defect. Using
Bethe–Ansatz techniques, this problem was first solved in [26] in the case of alternating
parallel updates on two sublattices. The solution, however, is fairly complicated and amounts
to a list of rules for an operative construction of the stationary state. In the present work we
solve the problem in a more compact way by using the matrix-product technique. Moreover,
this formalism allows models with different update sequences to be solved within the same
framework. In order to demonstrate this, we consider two different update sequences. Our
main intention, however, is to outline a method which might help to solve the problem of
stochastic hopping in the presence of a defect.

The paper is organized as follows. In section 2 we define the ASEP on a ring with a
defect and introduce two different dynamical rules. In section 3 we show that the two-state
model on a ring can be reformulated as a four-state model on a linear chain. Using this
mapping we formulate a matrix-product ansatz (see section 4) leading to a set of algebraic
equations which turns out to be the same for both update sequences. In section 5 we give
simple two-dimensional representations of this algebra. Using these representations, some
physical quantities are derived and discussed in section 6. Finally in section 7 we summarize
our results and discuss possible generalizations.

2. The model

The exclusion model we are going to study is defined as follows. Particles of one species
move in a clockwise direction on a one-dimensional ring with an even number of sites
L = 2N . Each site can be either free or occupied by one particle. The time evolution is
discrete and defined by a certain sequence of parallel updates to be specified below. In
the bulk of the chain these updates are deterministic, i.e. in each time step the particles

† As it has been shown recently, for every one-dimensional stochastic lattice model with local random sequential
dynamics the eigenstates of the Hamiltonian can be written as MPSs [21]. However, matrix representations which
are useful for practical purposes seem to be limited to a few models.
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Figure 1. The ASEP on a ring withL = 2N = 8 sites. In the bulk particles hop deterministically
in a clockwise direction. A defect is introduced between sitesL and 1 where particles hop with
probability q.

move forward provided that the following site is empty. Between two particular sites (by
convention sitesL and 1) a defective bond is inserted where the particles hop stochastically
with a given probability 0< q < 1 (see figure 1).

In what follows we will consider two different update sequences. The first one we call
symmetrized sequential dynamics: in each time step the first update takes place at the sites
(N,N + 1) just opposite the defect. Then a sequence of pairwise updates follows. These
updates are arranged symmetrically with respect to the defect. The first pair to be updated
is (N − 1, N) and(N + 1, N + 2), followed by (N − 2, N − 1) and(N + 2, N + 3) up to
(1, 2) and (L− 1, L). The last pair of sites to be updated is the defect(L, 1). As we will
see below, this is the simplest dynamical rule in terms of the matrix formalism.

The other dynamical rule we will use is calledsublattice-parallel dynamics[26]. Here
we have to assume thatN = L/2 is an even number. Each time step consists of two
separate half time steps. In the first half time step particles located at odd sites move one
step in a clockwise direction provided that the next site is empty. Then in the second half
time step particles at even sites move forward in the same way except for the defect where
such moves take place with probabilityq. This dynamical rule was introduced in [26] for
solving the deterministic ASEP with a defect. A similar dynamics was also used in [25, 18]
in the case of the ASEP with external particle input and output.

Symmetrized sequential and sublattice-parallel dynamics can be cast in a more formal
way as follows. Letτj = 0, 1 be the occupation number at sitej and consider the space of
all configurations in a canonical configuration basis. LetT (T (q)) be the two-site hopping
matrix in the bulk (at the defect):

T =


1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1



T (q) =


1 0 0 0
0 1 q 0
0 0 1− q 0
0 0 0 1

 .
(1)

Then the transfer matrixTseq for symmetrized sequential dynamics reads

Tseq= T (q)L,1(T1,2TL−1,L)(T2,3TL−2,L−1) . . . (TN−1,NTN+1,N+2)TN,N+1 (2)

where the indices indicate pairs of sites on whichT acts. The transfer matrix for sublattice-
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Figure 2. By grouping pairs of sites, the two-state ASEP on a ring can be regarded as a
four-state model on a linear chain.

parallel updates factorizes into two factors

Tpar= T (2)par T
(1)

par (3)

which are given by

T (1)par = (T1,2TL−1,L)(T3,4TL−3,L−2) . . . (TN−1,NTN+1,N+2)

T (2)par = T (q)L,1(T2,3TL−2,L−1)(T4,5TL−4,L−3) . . . (TN−2,N−1TN+2,N+3)TN,N+1.
(4)

Notice that both transfer matricesTpar and Tseq differ only in the sequence of their
(noncommutative) factors. There are, however, many other transfer matrices with different
update sequences. As we will see below, the matrix-product formalism allows us to compute
ground states for various dynamical rules from the same matrix representation just by
rearranging the factors in the matrix product. This is an important advantage of the matrix-
product method compared to direct techniques as presented in [26].

3. Reformulation as a four-state model

Although the defect breaks translational invariance, the model is still symmetric under
reflections with respect to the origin combined with particle–hole symmetry. Since we
expect correlations in the stationary state to be subject to this symmetry, it is natural to
introduce a matrix ansatz which exploits this symmetry. This can be done by grouping
pairs of sites together which are located symmetrically with respect to the defect. This
mapping defines a four-state model on a linear chain withN sites and closed boundaries
which is equivalent to the original one (see figure 2). In this language the two-site hopping
matrix T (q)L,1 in the original notation is equivalent to an one-site operatorL1 at the left
boundary acting in a four-dimensional space. SimilarlyTN,N+1 corresponds to a one-site
operatorRN at the right boundary. The block-spin variablesσi = (τL−i+1, τi) can take
four different values{0, 1, 2, 3} = {(0, 0), (0, 1), (1, 0), (1, 1)}. In this basis the boundary
hopping matrices read

L =


1 0 0 0
0 1 q 0
0 0 1− q 0
0 0 0 1



R =


1 0 0 0
0 0 0 0
0 1 1 0
0 0 0 1

 .
(5)



Deterministic exclusion process with a stochastic defect 2749

In the bulk pairs of opposite hopping, matrices(Ti,i+1 TL−i,L−i+1) are grouped together
resulting in a two-site operatorSi,i+1 which is given by a 16× 16 matrix:

S =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (6)

In terms of these operators, the transfer matrix for sequential dynamics (2) takes the simple
form

Tseq= L1S1,2S2,3 . . .SN−1,NRN. (7)

Similarly the transfer matrix for symmetrized sublattice-parallel dynamics (4) can be written
as

T (1)par = S1,2S3,4 . . .SN−1,N T (2)par = L1S2,3S4,5 . . .SN−2,N−1RN. (8)

So far, we have only rewritten the original model on a ring as a four-state model on a linear
chain.

4. The matrix-product formalism

As we will show, the four-state formulation allows us to write the stationary state of
the asymmetric exclusion model with a defect as a matrix-product state. Let us define
noncommutative operators (matrices)A0, A1, A2, A3 andB0, B1, B2, B3 as well as bra and
ket vectors〈W | and |V 〉 in some auxiliary space and demand that they obey the relations

S(A⊗B) = (B ⊗A) (9)

RA|V 〉 = B|V 〉 (10)

〈W |LB = 〈W |A. (11)

whereA = (A0, A1, A2, A3), B = (B0, B1, B2, B3) and ‘⊗’ denotes the tensor product in
configuration space. This algebra can be used to construct the ground state of the stochastic
model we are studying. Let us first consider the case of symmetrized sequential dynamics.
As we will show below, the probabilityPseq(σ1, . . . , σN) to find the stationary system in
the configuration{σ1, . . . , σN } can be written as

Pseq(σ1, . . . , σN) = 1

Z
seq
N

〈W |Aσ1Aσ2 . . . AσN |V 〉 (12)
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whereZseq
N is a normalization constant which is given by

Z
seq
N = 〈W |CN |V 〉 with C = A0+ A1+ A2+ A3. (13)

For example, the probability to find the four-state chain withN = 4 sites in the
configuration {1, 0, 3, 2} = {(0, 1), (0, 0), (1, 1), (1, 0)} is given by Pseq(1, 0, 3, 2) =
〈W |A1A0A3A2|V 〉/〈W |C4|V 〉.

The mechanism ensuring the stationarity of these probabilities is precisely the one
introduced in [19] and works as follows. Formally, equation (12) may be written as|Pseq〉 =
(Z

seq
N )−1〈W |A⊗N |V 〉. Applying the transfer matrixTseq= L1S1,2S2,3 . . .SN−1,NRN to this

state the matrixR at the right end of the chain generates the vectorB = (B0, B1, B2, B3)

at theN th position in the productA⊗N (cf equation (10)). Then, by successively applying
S, the generated vectorB is commuted to the left (cf equation (9)). Finally, when reaching
the left boundary, the vectorB is turned intoA by the action of the defect hopping matrix
L (cf equation (11)). Consequently, the application of the transfer matrixTseq on the state
|Pseq〉 results in the same state|Pseq〉. Thus the state|Pseq〉 is a stationary state of the transfer
matrix (7), i.e. of the transfer matrix (2).

For sublattice-parallel dynamics we have to use a slightly different ansatz which involves
alternating matrices. We write the stationary state as

Ppar(σ1, . . . , σN) = 1

Z
par
N

〈W |(Aσ1Bσ2)(Aσ3Bσ4) . . . (AσN−1BσN )|V 〉 (14)

where

Z
par
N = 〈W |

( 4∑
i=1

Ai

4∑
j=1

Bj

)N/2
|V 〉. (15)

For this type of dynamics the mechanism ensuring the stationarity of the probabilities (14)
is precisely the one proposed in [18]. Again we use use the algebraic relations (9)–(11).
Writing |Ppar〉 = (Zpar

N )
−1〈W |(A⊗B)⊗N/2|V 〉 one can easily verify that in each half time

step the vectorsA andB are exchanged:

T (2)par [(A⊗B)⊗N/2] = (B ⊗A)⊗N/2 (16)

〈W |T (1)par [(B ⊗A)⊗N/2]|V 〉 = 〈W |(A⊗B)⊗N/2|V 〉. (17)

Therefore the state|Ppar〉 is invariant under application of the transfer matrixTpar.
It should be emphasized that both symmetrized sequential and sublattice-parallel

dynamics use the same algebra (9)–(11). One can also consider various other update
sequences leading to (9)–(11). For example, if updating is started in the middle of
the system and proceeds to both ends from there, the stationary state can be written as
〈W |A⊗NB⊗N |V 〉 with theAi, Bi and 〈W |, |V 〉 obeying (9)–(11). In other words, having
determined a nontrivial representation of the algebra given above, one can immediately
compute stationary states for various update sequences.

5. Representation of the algebra

Equations (9)–(11) define an algebra of eight objectsA0, A1, A2, A3, B0, B1, B2, B3. There
are 16 bulk equations

[Ai, Bi ] = 0 (i = 0 . . .3)

B0A2 = B0A3 = B1A0 = B1A2 = B1A3 = B3A0 = B3A2 = 0

AiBj + AjBi = BiAj (i, j) ∈ {(0, 1), (2, 0), (2, 3), (3, 1)}
A0B3+ A1B2+ A2B1+ A3B0 = B2A1

(18)



Deterministic exclusion process with a stochastic defect 2751

four equations at the defect (left boundary of the four-state model):

〈W |B0 = 〈W |A0 〈W |(B1+ qB2) = 〈W |A1

〈W |(1− q)B2 = 〈W |A2 〈W |B3 = 〈W |A3
(19)

and four equations opposite the defect (right boundary):

A0|V 〉 = B0|V 〉 0= B1|V 〉
(A1+ A2)|V 〉 = B2|V 〉 A3|V 〉 = B3|V 〉.

(20)

Notice that the algebra is invariant under the replacement [27]

A0→ λA0 B0→ λB0 A3→ λ−1A3 B3→ λ−1B3 (21)

whereλ is some number.
The algebra (18)–(20) has a complex structure and thus it is practically impossible to

determine its representations directly. In order to simplify the problem, we therefore use
the following ansatz:

B0 = A0 B1 = A1− 1 B2 = A2+ 1 B3 = A3. (22)

A similar ansatz has been used in [19, 20] in order to relate sublattice-parallel and random-
sequential updates in the ASEP with external particle input and output. It is obvious that
equation (22) imposes strong constraints and thus reduces the space of solutions. However,
it turns out that it still includes nontrivial physical representations.

Inserting equation (22) into equations (18)–(20), we obtain a reduced algebra of four
objects. It consists of seven bulk equations:

A1A0 = A0 A1A3 = A3 A1A2 = A2 A0A2 = A3A2 = A0A3 = A3A0 = 0

(23)

and two boundary conditions:

〈W |A2 = 1− q
q
〈W | A1|V 〉 = |V 〉. (24)

This algebra is much simpler and can be analysed systematically on a computer. In fact,
we found the following two-dimensional representation:

A0 = λ
(

0 1
0 1

)
A1 =

(
1 0
0 1

)
A2 = 1− q

q

(
1 1
0 0

)
A3 = 0

〈W | = (1, 1) |V 〉 =
(

1
1

) (25)

whereλ is a free parameter. Algebraicallyλ is related to the invariance of the algebra
in equation (21). Physically it is related to the conservation of the number of particles.
In fact, as will be discussed in the next section, the ground states (12) and (14) describe
grand-canonical ensembles of systems with different particle numbers where the parameter
λ plays the role of a fugacity [27].

As can be verified easily, the canonical ensemble described by the above representation
includesall sectors withM 6 N = L/2 particles. (If there were more thanL/2 particles,
at least one of the block spinsσi = (τL−i+1, τi) would be in the state (1,1). BecauseA3 = 0
this implies that the corresponding matrix product vanishes.) However, the algebra (23),
(24) is invariant under the exchange of the matricesA0 ↔ A3 which immediately gives
a second set of representations for systems with more thanL/2 particles. Physically this
invariance is related to the particle–hole symmetry in the ASEP.
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6. Some physical quantities for the model with symmetrized sequential dynamics

6.1. Micro-canonical ensemble: density-profile for a fixed particle number

In order to derive physical quantities for a fixed particle-number, we have to project the
stationary state onto a sector with a specified number of particlesM. A projection formalism
for matrix-product states has been introduced recently in [22]. We are now going to apply
this formalism to the present model with sequential dynamics (the case of sublattice-parallel
dynamics can be treated similarly). Because of particle–hole symmetry, we restrict ourselves
to less than half-filled systems whereM 6 N = L/2.

Let χ(m; σ1, . . . , σn) be a function which is 1 if the sites 1. . . n are occupied bym
particles and 0 otherwise:

χ(m; σ1, . . . , σn) = δ
(
n−m+

n∑
i=1

(δσi ,3− δσi ,0)
)
. (26)

Then the probability to find the model with sequential updates andM particles in the
configuration{σ1, . . . , σN } is given by

P
seq
M (σ1, . . . .σN) = 1

Z
seq
N,M

χ(M; σ1, . . . , σN)〈W |Aσ1 . . . AσN |V 〉 (27)

whereZseq
N,M is the normalization constant restricted to theM-particle sector:

Z
seq
N,M = 〈W |GN,M |V 〉 (28)

GN,M =
∑

σ1,...,σN

χ(M; σ1, . . . , σN)Aσ1 . . . AσN . (29)

The expressionGN,M is the sum of all products ofN matrices withM particles. By
definition, two of these objects can be combined by convolution:

GN1+N2,M =
M∑
j=0

GN1,jGN2,M−j . (30)

Physical quantities can be expressed in terms of combinations of these objects. For example
the densityc(x) to find a particle at sitex in the original model on the ring withL = 2N
sites andM 6 N particles is given by

c(x) = 1

Z
seq
N,M



min(x−1,M−1)∑
j=0

〈W |Gx−1,jA1GN−x,M−j−1|V 〉 if x 6 L/2

min(L−x,M−1)∑
j=0

〈W |GL−x,jA2Gx−N−1,M−j−1|V 〉 if x > L/2.

(31)

Similar expressions exist for the current and higher correlation functions. OnceGn,m is
known, all these quantities can be computed immediately.

The expressionGn,m can be defined recursively byGn,m = 0 if m < 0 or m > n,
G0,0 = 1, and

Gn,m = A0Gn−1,m + (A1+ A2)Gn−1,m−1+ A3Gn−1,m−2. (32)

However, instead of solving this recurrence relation algebraically, it is much simpler to use
directly the representation (25). We obtain

Gn,m =
(
z1 z3− z2− z1

0 z2

)
(33)
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where

z1 = δn,mq−n z2 =
(
n

m

)
z3 = 2

m∑
j=0

(
n

m− j
)
(1− q)jq−j . (34)

Using this result we obtain the normalization (28)

Z
seq
N,M = 2q−M

M∑
j=0

(
N

M − j
)
qjqM−j = 2q−M(1− q)M−NI1−q(N −M,M + 1) (35)

whereIz(n,m) is the regularized incomplete beta function. Now the particle density profile
(31) can be computed easily. Using thatA1 = 1 and 〈W |Gseq

n,mA2 = 〈W |δn,m(1− q)q−n−1

we get

c(x) = 1

Z
seq
N,M

{
Z

seq
N−1,M−1 if x 6 L/2
(1− q)qx−2N−1Z

seq
x−N−1,M+x−2N−1 if x > L/2.

(36)

This formula holds for less than half-fillingM 6 N = L/2 (the case of more thanL/2
particles is related by particle–hole symmetry). Writingx = L − y + 1 and keeping the
particle densityρ = M/N � q fixed one can now derive the asymptotic expression for the
particle density in front of the defect in the thermodynamic limit:

lim
N→∞

c(L− y + 1) = (1− q)
(
ρ

q

)y
. (37)

A similar result was derived in [26] for sublattice-parallel updating.

6.2. Grand-canonical ensemble: correlations for a large lattice

Let us consider a grand-canonical ensemble of systems withL � 1 and an average
particle numberρL whereρ is some given density. Its probability distribution is given
by equation (12) with the matrices (25). The ‘fugacity’ parameterλ has to be chosen such
that the particle-density is equal toρ, i.e. it has to solve the following equation:

2Nρ = 1

Z
seq
N

N∑
i=1

〈W |Ci−1(A1+ A2+ 2A3)C
N−i |V 〉. (38)

As in the previous section we restrict ourselves to particle numbers less thanN = L/2
(results for systems with higher particle numbers are obtained exploiting the particle–hole
symmetry). Because ofC = A0+A1+A2+A3 andA3 = 0, equation (38) can be written
as

1− 2ρ = 1

NZ
seq
N

N∑
i=1

FN,i with FN,i = 〈W |Ci−1A0C
N−i |V 〉. (39)

The computation of the matrix-elementsZseq
N andFN,i is done most easily in a representation

whereC is diagonal. Such a representation can be obtained by means of a similarity
transformation from the representation (25). We will use the following matrices and vectors:

C =
(
q−1 0

0 1+ λ
)

A0 = λ
(

0 2(q−1)
q+λq−1

0 1

)
〈W | =

(
1,

2λq

q + λq − 1

)
|V 〉 =

( 2(q−1)
q+λq−1

1

) (40)
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to computeZseq
N andFN,i as

Z
seq
N =

2

q + λq − 1
{λq(1+ λ)N + (q − 1)q−N } (41)

FN,i = 2λ

q + λq − 1
(1+ λ)N−1

{
λq + q − 1

(q(1+ λ))i−1

}
. (42)

The large-N asymptotics of these expressions depend on the magnitudes of the terms 1+ λ
andq−1. Let us consider the case 1+ λ > q−1 with 1+ λ− q−1 = O(N0) first. Inserting
equations (41) and (42) into equation (39) and approximating forN � 1 results in

λ = 1− 2ρ

2ρ
. (43)

This equation relates the parameterλ to the densityρ under the condition 1+ λ > q−1, i.e.
for

ρ <
q

2
. (44)

Equation (43) completes the description of the system for the caseρ < q/2. One can now
easily compute the density-profile or correlation functions. By noticing thatC plays the role
of a transfer matrix one reads from equation (40) that all correlations decay exponentially
(see e.g. [17]) with a correlation lengthξ = {log(1+ λ)q}−1. Using the explicit expression
(43) for λ we find

ξ ≈
{

log
q

2ρ

}−1

(N � 1, ρ < q/2). (45)

This result is the same as the one obtained in [26] for the model with sublattice-parallel
dynamics.

In the caseρ > q/2 the above assumptions onλ do not lead to any result. In order to
obtain a finite density we have to assumeλ to be of the form

λ = −1+ q−1

(
1+ λ′

N

)
(46)

with some numberλ′ which is independent ofN . Computing again the large-N asymptotics
of equations (41) and (42) and inserting it into equation (39) results in the transcendental
equation

1− 2ρ

1− q =
1+ (λ′ − 1)eλ

′

λ′(eλ′ − 1)
(47)

which is soluble for densitiesρ > q/2. Equations (46) and (47) relate the parameter
λ to the densityρ. The correlation length, which is given byξ = {log(1 + λ)q}−1

(ξ = −{log(1+ λ)q}−1) for λ′ > 0 (λ′ < 0) takes now the form

ξ ≈ N

|λ′| (N � 1, ρ > q/2) (48)

i.e. it is proportional to the system size. Consequently, correlations on a distancek � N

decay likeλ′k/N . This type of behaviour is completely different from the one observed in
theρ < q/2-phase. It indicates that the system behaves like the one undergoing sublattice-
parallel dynamics [26] where there is a coexistence phase with non-exponential decay of
correlations.
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7. Conclusion

We have shown that MPS techniques can be applied successfully to an asymmetric exclusion
processes on a ring with a defect. In order to apply this method, the model on a ring has to
be reformulated as a four-state model on a linear chain. This ansatz takes into account the
fact that translational invariance is broken by the defect while the system is still symmetric
under reflections with respect to the defect combined with particle–hole exchange. The
algebra we derived has very simple two-dimensional representations which allow physical
quantities like the density profile to be computed directly. Another advantage of the matrix
formalism is that the model with different dynamical rules can be solved within the same
framework (i.e. with the same algebra and representations).

The ASEP discussed in this paper is a very simple one where particles hop
deterministically in the bulk. Our hope is that the present work may show a way to solve
the more general problem with probabilistic hopping in the bulk. This generalized model is
controlled by three quantities, the bulk hopping ratep, the defect hopping rateq, and the
particle densityρ = M/L. In the so-called Hamiltonian limitp, q → 0, p/q = constant,
it includes the case ofrandom sequential updateswhich is an outstanding problem.

When introducing a bulk hopping ratep, the algebra (18)–(20) has to be replaced by
the bulk equations

[Ai, Bi ] = 0 (i = 1 . . .4)

(1− p)AiBj = BiAj (i, j) ∈ {(0, 2), (1, 0), (1, 3), (3, 2)}
AjBi + pAiBj = BjAi (i, j) ∈ {(0, 2), (1, 0), (1, 3), (3, 2)}
(1− p)AiBj + p(1− p)A1B2 = BiAj (i, j) ∈ {(0, 3), (3, 0)}
(1− p)2A1B2 = B1A2

A2B1+ pA0B3+ p2A1B2+ pA3B0 = B2A1

(49)

and the boundary conditions

〈W |B0 = 〈W |A0 A0|V 〉 = B0|V 〉
〈W |(B1+ qB2) = 〈W |A1 (1− p)A1|V 〉 = B1|V 〉
〈W |(1− q)B2 = 〈W |A2 (pA1+ A2)|V 〉 = B2|V 〉
〈W |B3 = 〈W |A3 A3|V 〉 = B3|V 〉.

(50)

This algebra is even more complicated than the previous one and we were not able to
find representations or to prove its consistency. However, following the ideas of [19], one
could again assume the additional relations given in equation (22) to hold. This reduces the
algebra to

pA1A0 = A0 pA1A3 = A3 pA0A2 = (1− p)A0 pA3A2 = (1− p)A3

A0A3 = A3A0 = 1− p
p(2− p)(A1+ A2) A1A2 = (1− p)2

p(2− p)A1+ 1

p(2− p)A2

(51)

together with the boundary equations

〈W |A2 = 1− q
q
〈W | A1|V 〉 = 1

p
|V 〉. (52)

Likewise, although this algebra is much simpler, we were not able to prove its consistency
and the existence of nontrivial representations. As usual in ASEPs including a Hamiltonian
limit, such nontrivial representations are expected to be infinite-dimensional. The ASEP
with a defect and random sequential updates remains as an open problem.
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